Altair Flux™

Análisis electromagnético, eléctrico y térmico

Accelerating Upright Scooter Mechatronic Development

Integrate models for mechanical, electrical, and controller subsystems to simulate your mechatronic product holistically as a system-of-systems. Exchange models and/or co-simulate with other CAE tools either from Altair (such as Altair MotionSolve® and Altair Flux®) or from 3rd parties through the Functional Mockup Interface (FMI) open standard.


Electric Vehicle Drivetrain Optimization & System of System Simulation

Simulate electric powertrains for various types of vehicles (e.g., cars, trucks, buses, trains, scooters, drones, aircraft, etc.) combining mechanical plant models with motors, batteries, & controllers together with realistic drive cycles. Then optimize the overall performance of your electric vehicles.


Guide to Process Manufacturing

Any industry that produces bulk quantities of goods such as pharmaceuticals, food, chemicals, or cosmetics, is seeking to produce these products consistently while reducing cost factors like waste and down time. Due to the nature of process manufacturing, multiple ingredients are combined to be mixed, coated, or sorted, so understanding the behavior of these processes is of paramount importance for manufacturers. Through the use of simulation modeling and Smart Manufacturing principals, manufacturers are now able to optimize these processes, leading to greater productivity and profitability.


Optimal Design for Cell Phone Cameras - Motorola Mobility uses Simulation of Voice Coil Motors in Consumer Cameras

The competitive consumer device industry has quick time-to-market deadlines. Smartphone cameras use voice coil motor (VCM) actuators to translate a lens in three degrees of freedom in order to bring an object to focus on the image plane and to optically stabilize the camera. To ensure optimal design, the Motorola Mobility team selected Altair Flux™ to simulate the entire VCM and camera system. Flux allowed the team to quickly validate designs and ensure that the part compatibility and camera performance met the design targets. Other devices within the phone, such as speakers, antenna shields, accessory magnets etc. can affect the VCM performance due to magnetic interference. With Flux, the team simulated the entire VCM and phone layout, accounting for all possible magnetic interference from other devices.

Customer Stories

Magneto-thermal PMSM Performance Simulation with Validation

In order to reduce energy consumption, efficiency is a key criterion that designers seek to optimize their electric motors. Complementary to the electromagnetic analysis, a thermal characterization is essential to study from the first design phase how temperature influences the performance of the machine. To obtain results close to the real working conditions, the motor control and the current harmonics produced by the electrical converter and control algorithms cannot be ignored.

Technical Papers

Rethinking the e-Motor Design Process to Maximize Vehicle Range

In this article, appearing in the Fall 2020 issue of Engine + Powertrain Technology International, Altair outlines how a holistic approach to propulsion system design is enabling manufacturers to meet performance requirements while maximizing vehicle range.


Power Transformer under Short-circuit Fault Conditions: Multiphysics Approach to Evaluate the Robustness

Transformers’ windings experience mechanical loads from electromagnetic forces due to the currents they carry. Power transformers can suffer from high sudden short-circuit currents. These short-circuit currents are a significant threat, not only from an electrical but also from the structural integrity point of view. In this paper, coupled electromagnetic and structural mechanics simulations are carried out to evaluate short-circuit fault risks in a comprehensive and accurate way.


New Iron Losses Characterization in Altair Flux™

Altair Flux new material losses data using the unique LS model and ability to consider own measurements enables to produce the most accurate predictions of iron losses according to your material specificities. Moreover, enhanced material manager interface enables to quickly update material properties and models and add Bertotti material coefficients.


Altair Flux™ Direct Model Export for Straightforward System Integration

Altair Flux offers a direct model export compatible with major system simulation software for straightforward system integration. Two different formats are available: FMU (Functional Mockup Units) dynamic models format is straightforward, standardized and very efficient, while lookup tables are an interesting alternative, offering the opportunity to adjust the dimensions of the table according to the required precision. Latest improvement enable impressive speed-up with Altair Activate™.


Analysis of Large Air Flux Leakage Applications Accelerated with Altair Flux™ Integral Methods

Altair Flux offers faster and more accurate 3D magnetostatics analysis thanks to the implementation of new integral method. This is extremely interesting for applications with a lot of flux leakage in air, such as sensors modelling. No air mesh is required, dramatically reducing the computation time versus classical finite element method and offering much higher accuracy.


Altair Flux™ 2020 - New Features Presentation

Discover in our quick video the latest Altair Flux new features, among which: accelerated analysis for applications with large air flux leakage, losses accuracy improvement thanks to new iron losses characterization, inductance computation in transient analysis, improved skewed capabilities and faster system coupling.


Improving Speed and Precision of a CNC Milling Machine with Holistic System Simulation

The presentation outlines a solution strategy for how a digital twin of a milling machine is solving mechatronic challenges. To improve cycle times, accuracy, and addressing vibration problems a holistic system simulation serves as the basis for optimization. The efficient modeling of the real system behavior with flexibilities, contacts, gaps, friction, nonlinearities in the drives (incl. saturation effects of motors), power electronics in combination with the control system is the basis for efficient controller design and optimization of the control parameters. The dynamic interaction of multiple system components combining 3D finite elements analysis multi-body dynamics and control system helps avoiding Tracking-, drag-, positioning errors rebound, and accumulation effects.  

Use Cases

Schneider Electric Accelerates the Development of Smarter Equipment

As the world becomes more connected, devices are requiring more sensors, with better integration. See how Schneider Electric is using Altair Flux to efficiently design and integrate next sensors technology in their new equipment.

Customer Testimonials

Evolution & Usage of Electromagnetic Simulation in the Naval & Shipbuilding Industry

The Marine Engineering and Shipbuilding Industry is becoming even more important in the connected world. The ability to accelerate turnaround time and reduce cost is becoming a key driver to success. The use of simulation technologies to improve design efficiency and reduce physical testing costs continues to be one of the best ways to address engineering challenges in the Marine industry.


Using Altair Software for Electromagnetics

Altair software is used across industries to solve a broad range of electromagnetic problems from static to low and high frequencies. Whether your application requires multiple frequency and time-domain techniques with true hybridization to enable the efficient exploration of a broad spectrum of electromagnetic performance, other the simulation of magneto static, steady-state and transient conditions, we have the tools you need.

Learn more at

Use Cases

Using Altair Software for Multiphysics

Altair provides an industry-leading portfolio of multiphysics-enabled software to simulate a wide range of interacting physical models including fluid-structure interaction, flexible bodies, aeroacoustics, and thermomechanical simulation. Together with Altair’s multidisciplinary optimization and scalable high-performance computing you can solve real world engineering problems quickly and effectively.

Learn more at

Use Cases

EM and EDA, from Concept to Production

Altair’s portfolio of simulation-driven design solutions covers – amongst many other disciplines – electromagnetics (EM) and electronic design automation (EDA).


Run Faster, Make Friends and Embrace the Power - HyperWorks Unlimited HPC Appliances

If you want to supercharge your throughput, spend your days making radical improvements and work confidently from an easy-to-use browser - have we got a show for you! Begin the journey to lead your people to triumph and glory as you learn about the joys of unlimited software, supercomputing hardware and a SysAdmin waiting to fulfill your every desire with HyperWorks Unlimited HPC Appliances.


Altair FluxMotor - Thermal Design, Test, and NVH Evaluation

The latest release of FluxMotor, Altair's software product for electric machines design, adds several functionalities in the area of thermal design, test, and NVH evaluation. This short video illustrates some of the major updates.

Use Cases

Altair Flux and FluxMotor - Electric Motor Optimization

Designing an efficient motor has always been a complicated set of tasks. Altair's multidisciplinary optimization platform is a solution that allows considering multiphysics parameters and conflicting constraints.

Use Cases

Using Multiphysics to Predict and Prevent EV Battery Fire

Electric vehicles (EV) offer the exciting possibility to meet the world’s transportation demands in an environmentally sustainable way. Mass adoption could help reduce our reliance on fossil fuels, but the lithium-ion (Li-on) batteries that power them still present unique challenges to designers and engineers, primary among them to ensuring safety against battery fire. To achieve vehicle manufacturer’s ambitious adoption goals, it is necessary to improve the safety of Li-on batteries by better understanding all of the complex, interconnected aspects of their behavior across both normal and extreme duty cycles. Altair is focused on developing a comprehensive understanding of automotive battery safety issues which it has named the Altair Battery Designer project. It combines innovative design methods and tools to model and predict mechanical damage phenomena as well as thermal and electro-chemical runaway. Altair has developed an efficient way to calculate mechanical and short-term thermal response to mechanical abuses, providing accurate computational models and engineer-friendly methods to design a better battery.

White Papers

Multiphysics Simulation of Electrical Rotating Machines and Next Gen Design - Rotating Machinery

This workshop will showcase a process-oriented multidisciplinary simulation environment to accurately analyse the performance of complex rotating machines. The participants would learn about multiple physics analysis of motors; including electromagnetics, structural, thermal, and fluid dynamics using highly automated modelling tasks, helping to drastically reduce the time spent creating finite element models and interpreting results. Unique solution by Altair for rotating machinery process takes setup to a solution, time from hours to minutes which allows engineer to try multiple design iterations in a short time and create a performance curve in the automated environment.


Altair for Electromagnetics Applications

Altair software is used across industries to solve a broad range of electromagnetic problems from static to low and high frequencies.


Altair for Multiphysics Applications

Altair provides an industry-leading portfolio of multiphysics-enabled software to simulate a wide range of interacting physical models including fluid-structure interaction (FSI), flexible bodies, aeroacoustics, and thermomechanical simulation.


Online Workshop - Electromagnetic and Thermal Simulation of PMSM (IPM) Motor

Electromagnetic and Thermal Simulation of PMSM (IPM) Motor


Training - Rated Torque Simulation of IPM Motor Using Altair Flux

Rated Torque Simulation of IPM Motor Using Altair Flux


Infographic: The Impact of Multiphysics Optimization on e-Motor Development

Simulation helps you validate at the end of a product design cycle, but deployed early and throughout a development process, it can actually allow you to explore more potential solutions, collaborate more effectively and optimize the design for cost, performance, weight, and other important criteria. This infographic provides a framework for developing and implementing your own simulation-driven process to help you produce more efficient e-motors and shorten development times. 

Brochures, Images

Electric Motors Multidisciplinary Optimization Platform

The design of a high-performance e-Motor is a complex undertaking. Engineers have conflicting constraints to consider including efficiency, temperature, weight, size and cost. To explore more ideas, better understand their designs and improve performance, Altair HyperWorks™ has a workflow to guide motor designers through an efficient process of Simulation-Driven Design. This analysis and optimization solution supports multi-disciplinary teamwork and reduces design times.

Use Cases

Taking into Account Magnet Demagnetization During Solving Process in Flux

Taking magnet demagnetization phenomena into account during solving process offers more accuracy on typical quantities such as motor torque or electromotive force and new analysis like the evolution of the remanent flux density.

Use Cases, Videos

Flux Dedicated e-Motor Environment with Automated Tests

Discover the new Flux e-Machine Toolbox (FeMT) dedicated environment with automated tests.

Use Cases, Videos

The Multi Physics Optimization of an e-Motor Rotor

Vincent Leconte, Director of Business Development - EM Solutions at Altair presents at the 2019 UK e-Mobility Seminar. Optimization of e-Motors, Case Studies: Jaguar Land Rover & Porsche. Cooling Simulation of the eMotors.

Presentations, Videos

Meet your Energy Efficiency Goals in your Electrification Projects with Simulation

Electrification is one of the main means of creating a low-carbon economy, allowing to use renewable energies and energy efficient technologies. Electric power enters many industries and also impacts our everyday lives, especially with the electric mobility. The use of power electronics and control systems allows offering better reliability, safety and low maintenance costs, and also brings additional innovative functions. Learn how Altair simulation and optimization tools can help designing highly efficient electric machines, as well as advanced control strategies to help you build innovative and energy efficient electric solutions.

ATC Presentations

An Efficient and Automated Design Strategy for Multi-physics E-Motor Development

This presentation introduces an application of a unique, highly automatic, multi-physics design strategy for E-motors, based on a current program at Mercedes-AMG GmbH. The strategy considers essential development requirements including electromagnetics and thermal requirements, NVH, stress and durability. It accommodates for DOE, multi-objective optimization and design exploration methods to be used to explore and find feasible motor designs. The presentation will show how the strategy adds efficiency to the E-motor development process and how it impacts the total costs of development.

ATC Presentations

Using Machine Learning and Optimization to Develop e-Motor

The Altair Multiphysics platform provides a broad portfolio of solvers and tools to help engineers develop e-motor design requirements by using simulation and optimization methods. This presentation provides examples, using Altair Machine Learning and optimization solutions, of the e-motor requirements by leveraging in data available, which is key for e-motor designers to reduce time-to-market.

ATC Presentations

Modeling the Thermal Runaway Behavior of Li-ion Batteries upon Mechanical Abused Loading

This presentation demonstrates Altair’s capability of simulating the behavior of a mechanically damaged battery from a cell to a pack integrated in a vehicle, based on collaborative research previously conducted with MIT. An innovative approach of applying electromagnetics loss to predict rising temperature due to short circuit effects during an impact is discussed, along with the development of a software tool, Battery Design, which enables OEMs and suppliers to design battery applications using multiphysics optimization, including mechanical-electrical-electrochemical-thermal behaviors.

ATC Presentations

Upcoming New Wireless Solutions and Applications, including 5G

The rollout of 5G technology is going to be a boon across many industries globally, with the expansion of IoT and connected devices, and where lower latencies are opening the door to time-critical areas like autonomous vehicles, industrial IoT and healthcare. In this presentation we will share new applications and use cases from different major verticals, showing how organizations are designing innovative products using Altair electromagnetic simulation solutions related to antennas, wave propagation modelling, radio network planning and EMC applications. We will also talk about new solutions we have recently launched, and about what is available and coming in 5G.

ATC Presentations

Conceptual Design and optimization of an Electric Motor

Presentation by Koby Ingram, Gevasol BV. Conceptual Design and optimization of an Electric Motor using Altair Flux and HyperStudy. The customized electric machine with high level demands and efficiency is a challenging topic requiring top level of expertise and best in class simulation tools. This work focuses on the usage of Flux and Hyperstudy as tools for bettering the design and design process of e-motors. Presentation at the ATCx in Israel, Netanya on October 30, 2019.

ATC Presentations

NVH Refinement for Electric Vehicles

Replacement of traditional combustion engines with an electric powertrain, bring electro-mechanical induced tonal and high-frequency whine noise. In addition, tire and aerodynamic turbulent noise become more prominent in the absence of a standard Internal Combustion Engine. Also, the perceived sound quality imposes a new set of challenges. This leads to completely new methods of NVH refinement, keeping the decades of research aside. As it is important to address these issues at the design and development stage, adopting the new simulation techniques to manage future NVH challenges in e-Mobility is of the prime challenge to the traditional NVH engineers. In this webinar, we shall discuss some of those key NVH challenges specific to electric vehicles and appropriate simulation processes to develop countermeasures.


Traction Motors Design & Multidisciplinary Optimization

Traction Motor play key role in the electric vehicle/hybrid electric vehicle (EV/HEV) development process. The design of a High-Performance e-Motor is a complex undertaking. Engineers have conflicting constraints to consider including efficiency, temperature, weight, size, and cost. To explore more ideas, better understand their designs and improve performance, Altair HyperWorks™ has a workflow to guide motor designers through an efficient process of Simulation-Driven Design. This analysis and optimization solution supports multi-disciplinary teamwork and reduces design times.


Multi-body Enhancements & Customer Successes

Presenter: Rajiv Rampalli, Sr VP in HyperWorks Core Development team, Altair

Altair’s products for multi-body system simulation (MBS) – MotionView, MotionSolve, and Inspire Motion – form a key component of multi-disciplinary system simulations. In this presentation, we will look back on several achievements this year, in the form of customer successes as well as recent enhancements to these products which significantly extend the depth and breadth of capabilities. Some of these application examples also involve connections from MBS to other Altair technology or to 3rd-party technology such as to Altair OptiStruct (for flexible bodies and light-weighting) and Altair Activate (for hydraulics) and EDEM (for discrete element modeling of bulk materials).

ATC Presentations, Videos

Multi-Fidelity E-Motor Drive Solution

Presenters: Ulrich Marl, Key Account Manager for Electric Vehicle Motor-Feedback Systems, Lenord+Bauer & Andy Dyer, MBD Sr Technical Specialist, Altair

This presentation shows a modeling process to quantify the position/speed sensor (e.g, encoder) effects on an e-motor, and corresponding control system for a concept traction motor similar to the Nissan Leaf. The integrated solution of the e-drive is carried in Altair Activate as a system builder, using other Altair solutions e-motor solutions in FluxMotor and Flux to generate data for the e-motor itself, as well as the optimal current values for the Field-Oriented Contoller. The inverter is driven with efficient space vector pulse width modulation. The integrated solution also supports different levels of modeling fidelity for the system components, for example for the e-motor where either direct co-simulation with Flux for detailed finite element analysis or a reduced order model (ROM) using look-up tables. In this way, sensor design parameters can be evaluated within an accurate system of the e-drive to improve performance and efficiency.

ATC Presentations, Videos

The Wahoo KICKR Bike: Designing a Ride Experience that Blurs the Line Between Virtual and Reality

As more products enter the market that simulate real world experiences, consumers' expectations are rapidly increasing. To meet these rising expectations the hardware and controls required are becoming more complex while maintaining time to market and cost. To achieve this, efficiencies are required in the control’s development and hardware tools chains. Wahoo Fitness and Altair collaborated to create the new Wahoo KICKR Bike utilizing a Model-Based Design approach to controls development combined with a simulation driven design process to meet the high expectations of the bike trainer community.

ATC Presentations

Experience the Sound of Your Future EV Before it is Built

Achieving the targeted brand image in a short development cycle time with minimal or zero prototypes is a major challenge faced by EV companies. To overcome this challenge, Altair, HBK and Romax have jointly developed a simulation driven process coupled with capabilities to virtually experience the noise and vibration characteristics, giving engineers a way to obtain real time performance feedbacks as the vehicle is being developed. This joint presentation on the proposed NVH development process covers a wide range of topics, including benchmarking, target setting, full vehicle and motor gearbox simulation loadcases, troubleshooting, optimization and stochastic analysis, and playback of simulation results for subjective evaluations, with a number of new technologies representing the global best practice in sound and vibration design and development. Join us to explore ways to control the sound and vibration characteristics of the vehicle, achieve the right sound, and avoid common NVH pitfalls, while accelerating time to market utilizing and experiencing virtual NVH prototypes.

ATC Presentations

eBook: Learn Electromagnetic Simulation with Altair Feko

Altair Feko is an environment to solve electromagnetic problems. This book takes the reader through the basics of broad spectrum of EM problems, including antennas, the placement of antennas on electrically large structures, microstrip circuits, RF components, the calculation of scattering as well as the investigation of electromagnetic compatibility (EMC).


eBook: Flux2D Simulation of the Rotor Bar Breakage

This book is a step by step introduction in the building of finite element models using Altair Flux Student Edition 2018.1.2 for a squirrel cage bar breakage process and broken bar faults in an induction motor.

eBooks, Training Materials

Advanced Hystheresis Simulation Using Preisach Model - Altair Flux

Newly introduced in Altair Flux, the hysteresis modeling based on Preisach's model enables a better evaluation of iron losses and remanence effects. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.


Taking Demagnetization Into Account - Altair Flux

Demagnetization simulation: considering the magnet demagnetization phenomena during the solving process simulation enables very accurate predict the device performance, and measure the impact on EMF and torque for instance. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.


Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT

Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.